МИНОБРНАУКИ РОССИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования

«Российский государственный гуманитарный университет» (ФГБОУ ВО «РГГУ»)

ОТДЕЛЕНИЕ ИНТЕЛЛЕКТУАЛЬНЫХ СИСТЕМ В ГУМАНИТАРНОЙ СФЕРЕ Кафедра математики, логики и интеллектуальных систем в гуманитарной сфере

МАТЕМАТИЧЕСКАЯ ЛОГИКА

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

45.03.04 Интеллектуальные системы в гуманитарной сфере

Разработка и программирование интеллектуальных систем Уровень квалификации выпускника: бакалавр

Форма обучения очная

РПД адаптирована для лиц с ограниченными возможностями здоровья и инвалидов

Математическая логика
Рабочая программа дисциплины
Составитель:
Доктор технических наук, профессор
В.К. Финн
УТВЕРЖДЕНО
Протокол заседания кафедры МЛиИС
№ <u>7</u> от <u>10.07.2019</u>

ОГЛАВЛЕНИЕ

1. Пояснительная записка

- 1.1 Цель и задачи дисциплины
- 1.2. Формируемые компетенции, соотнесённые с планируемыми результатами обучения по дисциплине
- 1.3. Место дисциплины в структуре образовательной программы
- 2. Структура дисциплины
- 3. Содержание дисциплины
- 4. Образовательные технологии
- 5. Оценка планируемых результатов обучения
- 5.1. Система оценивания
- 5.2. Критерии выставления оценок
- 5.3. Оценочные средства (материалы) для текущего контроля успеваемости, промежуточной аттестации обучающихся по дисциплине
- 6. Учебно-методическое и информационное обеспечение дисциплины
- 6.1. Список источников и литературы
- 6.2. Перечень ресурсов информационно-телекоммуникационной сети «Интернет»
- 7. Материально-техническое обеспечение дисциплины
- 8. Обеспечение образовательного процесса для лиц с ограниченными возможностями здоровья
- 9. Методические материалы
- 9.1. Планы практических (семинарских, лабораторных) занятий
- 9.2. Методические указания для обучающихся по освоению дисциплины

Приложения

Приложение 1. Аннотация дисциплины

Приложение 2. Лист изменений

1. Пояснительная записка

1.1. Цель и задачи дисциплины

Целью дисциплины является развитие навыков точного рассуждения, включающего методы доказательства в исчислениях как заданных аксиоматически, так и в виде систем правил (аналитические таблицы).

Задачами дисциплины являются:

- изложение начальных сведений, необходимых как для дальнейшего изучения математической логики, так и для успешного освоения курсов программирования и информационных систем;
- введение в теорию бинарных отношений, которая необходима для изучения теории баз данных;
- изложение основ автоматического доказательства теорем (этот раздел логики имеет большое значение для систем искусственного интеллекта).

1.2. Формируемые компетенции, соотнесённые с планируемыми результатами обучения по лисциплине:

Компетенция	Индикаторы компетенций	Результаты обучения
(код и наименование)	(код и наименование)	
ОПК-1 Способен использовать основные законы естественнонаучных дисциплин в профессиональной деятельности, применять методы математического анализа, логики и моделирования, теоретического и экспериментального исследования в информатике, лингвистике и гуманитарных наук	ОПК-1.1 Способен использовать основы математического анализа, логики и математического моделирования. ОПК-1.2 Способен использовать математические методы для построения моделей в информатике, лингвистике и некоторых гуманитарных дисциплинах.	Знать: - характеристики аксиоматического метода; - определения фундаментальных понятий математической логики (логическая связка, формула, булевская оценка, тавтология, эквивалентность формул, совершенная дизъюнктивная нормальная форма (СДНФ) и совершенная конъюнктивная нормальная форма (СКНФ),булевская функция, замкнутый класс булевских функций, полнота и предполнота класса булевских функций; бинарное отношение, отношение эквивалентности и порядка, решетка, булева алгебра; логический вывод и доказательство, натуральный вывод, исчисление гильбертовского типа, аналитические таблицы, предикат, квантор, реляционнонная система, модел, общезначимость, полнота и непротиворечивость

- формальных теорий, предваренная нормальная форма, предваренная нормальная форма Скулема, Эрбрановский универсум, резолюция, подстановка и унификация);
- теорему о функциональной полноте системы булевских функций;
- леммы Хинтикки и теоремы о полноте метода аналитических таблиц для логики высказываний и логики предикатов;
- теорему о противоречивости формулы, представленной в предваренной нормальной форме Скулема, теорему Эрбрана;
- примеры применения теоремы Эрбрана для атоматического доказательства теорем (метод Девиса-Патнема, метод резолюций).

Уметь:

- формулировать на языках логики высказываний и логики предикатов утверждения (прежде всего математические), записанные неформально;
- использовать технику алгебры логики для приведения формул логики высказываний к СДНФ и СКНФ;
- использовать технику натурального вывода для построения доказательств методом аналитических таблиц;
- использовать алгебру бинарных отношений.

Владеть:

- навыками построения истинностных таблиц;
- навыками тождественных преобразований в алгебре логики;

		 навыками построения аналитических таблиц.
ОПК-2 Способен получать знания в области современных проблем науки, техники и технологии информатики, гуманитарных, лингвистических и социальных наук	ОПК-2.2 Пользуется современными справочными и библиотечными системами и системами дистанционного образования.	Знать:

1.3. Место дисциплины в структуре образовательной программы

Дисциплина «Математическая логика» относится к базовой части блока Б1 дисциплин учебного плана.

Для освоения дисциплины необходимы знания, умения и владения, сформированные в ходе изучения математики в объеме курса средней школы.

В результате освоения дисциплины формируются знания, умения и владения, необходимые для изучения следующих дисциплин и прохождения практик:

Математический анализ, Алгебра, Дискретная математика, Теория алгоритмов,

Математическая лингвистика, Программирование, Логическое программирование, Базы данных, Интеллектуальные системы, Информационные системы, Интеллектуальный анализ данных и машинное обучение.

Содержание дисциплины охватывает круг вопросов, связанных с теорией и применением результатов и методов математической логики к задачам построения систем искусственного интеллекта.

2. Структура дисциплины

Структура дисциплины для очной формы обучения

Общая трудоёмкость дисциплины составляет 7 з.е., 252 ч., в том числе контактная работа обучающихся с преподавателем 98 ч., самостоятельная работа обучающихся 118 ч.

		Ce		В	иды уче	бной раб	боты		
		ме			(B	часах)			
		ст		Кон	тактная		Пр	C	
		p	Лек	Ce			оме	a	
			ЦИИ	МИ			жу	M	Формы
				нар			точ	oc	текущего
							ная	то	контроля
№	Раздел				Прак	Лабо	атт	ЯТ	успеваемости,
Π/Π	дисциплины/темы				тичес	ратор	ест	ел	форма
	, ,				кие	ные	аци	Ь-	промежуточной
					занят	занят	Я	на	аттестации (по
					ия	ия		Я	семестрам)
								pa	1 /
								б	
								ОТ	
								a	

1	Алгебра логики	1	6	14		24	Оценка
							выполнения
							практических
							заданий
2	Логика	1	6	14		24	Оценка
	высказываний						выполнения
							практических
							заданий
3	Множества и	1	4	12		22	Оценка
	отношения						выполнения
							практических
							заданий,
							контрольная
							работа
	экзамен	1			18		экзамен по
	JK3aMCH						билетам
	итого:		16	40	18	70	
4	Логика	2	4	12		18	Оценка
	предикатов						выполнения
							практических
							заданий
5	Теорема Эрбрана	2	6	20		30	Оценка
	и методы						выполнения
	автоматического						практических
	доказательства						заданий,
	теорем						контрольная
							работа
	экзамен	2			18		экзамен по
	JRJUNION						билетам
	итого:		10	32	18	48	

3. Содержание дисциплины

No	Наименование	Содержание
п/п	раздела дисциплины	
1.	Алгебра логики	Язык логики высказываний. Логические связки. Формулы. Булевские оценки. Тавтологии. Эквивалентные формулы. Исчисление эквивалентных формул (ИЭФ). Доказуемые формулы и формулы выводимые из гипотез. Теорема о непротиворечивости для ИЭФ. Нормальные формы в ИЭФ. СДНФ, СКНФ. Приведение к ДНФ (СДНФ) и КНФ (СКНФ). Теорема о полноте для ИЭФ. Булевские функции. Суперпозиции булевских функций. Замкнутые классы. Предполные классы. Теоремы о представлении булевских функций посредством СДНФ и СКНФ. Функциональная полнота систем булевских функций. Число булевских функций, зависящих от п переменных. Классы Т0 и Т1. Замкнутость Т0 и Т1.
		Предполнота Т0 и Т1. Класс линейных функций L. Замкнутость L. Предполнота L. Лемма о нелинейной

		функции. Класс монотонных функций М. Замкнутость М.
		Предполнота М. Лемма о немонотонной функции. Класс
		самодвойственных функций S. Замкнутость S.
		Предполнота S. Лемма о несамодвойственной функции.
		Теорема о функциональной полноте систем булевских
		функций.
2.	Логика высказываний	Логика высказываний. Метод аналитических таблиц (а.т.). Классификация формул. Доказуемые формулы. Альфа-,
		бета-правила. Примеры расширения метода а.т. для
		трехзначных логик. Определения противоречий в логике
		высказываний. Теорема о непротиворечивости метода а.т.
		Лемма Хинтикки (для логики высказываний). Теорема о
		полноте метода а.т. (для логики высказываний). Теорема
		компактности (для логики высказываний). Приведение к
		ДНФ. и КНФ. методом а.т.
3	Множества и	Булева алгебра множеств. Кортежи. Декартово
	отношения	произведение. Предикаты и отношения. Булева алгебра
		отношений. Бинарные отношения. Операции обращения и
		композиции. Бинарные отношения: матричное задание
		булевских операций над бинарными отношениями.
		Свойства и типы бинарных отношений. Графы. Простые графы и бинарные отношения. Отношения типа
		эквивалентности. Разбиения. Теорема о разбиении.
		Частично упорядоченные множества. Диаграммы.
		Полурешетки. Квазирешетки. Дистрибутивные решетки.
		Дистрибутивные решетки с дополнениями (булевы
		алгебры). Примеры дистрибутивных квазирешеток и
		решеток: некоторые трехзначные логики.
4	Логика предикатов	Язык логики предикатов первого порядка. Кванторы.
	-	Формулы. Оценки формул логики предикатов первого
		порядка. Реляционные системы, модели. Общезначимые
		формулы. Предикаты на конечных универсумах:
		устранение кванторов. Метод а.т. для логики предикатов
		первого порядка. Классификация формул. Правила
		вывода. Доказуемые формулы. Теорема о
		непротиворечивости метода а.т. (для логики предикатов).
		Лемма Хинтикки (для логики предикатов). Теорема о
	T	полноте метода а.т. (для логики предикатов).
5	Теорема Эрбрана и	Предваренные нормальные формы в логике предикатов.
	методы	Предваренные нормальные формы Скулема. Теорема о
	автоматического	противоречивости формулы, представленной в предваренной нормальной форме Скулема. Эрбрановский
	доказательства теорем	универсум множества дизъюнктов. Н-интерпретации
		множества дизьюнктов S. Необходимое и достаточное
		условие невыполнимости S. Семантические деревья.
		Опровергающие вершины. Теорема Эрбрана (вариант I).
		Теорема Эрбрана (вариант II). Применение теоремы
		Эрбрана: метод Девиса-Патнема. Метод резолюций для
		для логики высказываний. Теорема о резольвенте как
		следствии дизъюнктов С1 и С2. Подстановка и
		унификация, наиболее общий унификатор. Алгоритм
		унификации. Теорема унификации. Метод резолюций для

логики предикатов 1-го порядка. Лемма подъема. Теорема
о полноте метода резолюций. Стратегия вычеркивания.
Алгоритм поглощения. Теорема о корректности
алгоритма поглощения.

4. Образовательные технологии

№ п/п	Наименование раздела	Виды учебных занятий	Образовательные технологии
1	2	3	4
1	Алгебра логики	Лекция +	Теоретическая лекция.
		Семинар 1-4	Семинар-обсуждение. Практикум по
			решению задач.
			Консультирование посредством электронной
		Самостоятельная	почты
	П	работа	T.
2	Логика	Лекция +	Теоретическая лекция.
	высказываний	Семинар 1-4	Семинар-обсуждение. Практикум по
			решению задач.
		Самостоятельная	Консультирование посредством электронной почты
		работа	почты
3	Множества и	Лекция +	Теоретическая лекция.
	отношения	Семинар 1-4	Семинар-обсуждение. Практикум по
		C C	решению задач.
			Консультирование посредством электронной
		Самостоятельная	почты
		работа	
4	Логика предикатов	Лекция +	Теоретическая лекция.
		Семинар 1-4	Семинар-обсуждение. Практикум по
			решению задач.
		_	Консультирование посредством электронной
		Самостоятельная	почты
	F 0.4	работа	m.
5	Теорема Эрбрана и	Лекция +	Теоретическая лекция.
	методы	Семинар 1-4	Семинар-обсуждение. Практикум по
	автоматического		решению задач.
	доказательства теорем	Самостоятельная	Консультирование посредством электронной
	ТСОРСМ	работа	110-11 DI
		paoora	

5. Оценка планируемых результатов обучения

5.1. Система оценивания

		Макс. количество баллов		
Форма контроля	Срок отчетности	За одну работу	Всего	
Текущий контроль:				
• Опрос (1—5)	2—16недели	5 баллов	20 баллов	
 дом. задание (темы 1—5) 	2—16 недели	5 баллов	20 баллов	

 контр. работа (темы 1—3) 	10 неделя	20 баллов	20 баллов
Промежуточная аттестация экзамен)	17 неделя		40 баллов
Итого за семестр (дисциплину)			100 баллов
Текущий контроль:			
• опрос (6—8)	2—11недели	5 баллов	20 баллов
 дом. задание (темы 6—8) 	2—11 недели	5 баллов	20 баллов
 контр. работа (темы 6—7) 	12 неделя	20 баллов	20 баллов
Промежуточная аттестация (экзамен)	17 неделя		40 баллов
Итого за семестр (дисциплину)			100 баллов

Полученный совокупный результат конвертируется в традиционную шкалу оценок и в шкалу оценок Европейской системы переноса и накопления кредитов (European Credit Transfer System; далее – ECTS) в соответствии с таблицей:

100-балльная шкала	Традиционная шкала	Шкала ECTS	
95 – 100	ОТЛИНИО		A
83 – 94	отлично	зачтено	В
68 - 82	хорошо		С
56 – 67	WHO DHOTTO ON WEST WO		D
50 – 55	удовлетворительно		Е
20 – 49	WAY TAR TATROPHY TA	не зачтено	FX
0 – 19	неудовлетворительно		F

5.2. Критерии выставления оценки по дисциплине

Баллы/ Шкала ЕСТЅ	Оценка по дисциплине	Критерии оценки результатов обучения по дисциплине
100-83/ A,B	«отлично»/ «зачтено (отлично)»/ «зачтено»	Выставляется обучающемуся, если он глубоко и прочно усвоил теоретический и практический материал, может продемонстрировать это на занятиях и в ходе промежуточной аттестации. Обучающийся исчерпывающе и логически стройно излагает учебный материал, умеет увязывать теорию с практикой, справляется с решением задач профессиональной направленности высокого уровня сложности, правильно обосновывает принятые решения. Свободно ориентируется в учебной и профессиональной литературе.
		Оценка по дисциплине выставляются обучающемуся с учётом результатов текущей и промежуточной аттестации. Компетенции, закреплённые за дисциплиной, сформированы на уровне – «высокий».

82-68/	«хорошо»/	Выставляется обучающемуся, если он знает
C 82-08/	«зачтено	теоретический и практический материал, грамотно и по
	(хорошо)»/	существу излагает его на занятиях и в ходе
	«зачтено»	промежуточной аттестации, не допуская существенных
	"Sa Tiello"	неточностей.
		Обучающийся правильно применяет теоретические
		положения при решении практических задач
		профессиональной направленности разного уровня
		сложности, владеет необходимыми для этого навыками
		и приёмами.
		Достаточно хорошо ориентируется в учебной и
		профессиональной литературе.
		Оценка по дисциплине выставляются обучающемуся с
		учётом результатов текущей и промежуточной аттестации.
		Компетенции, закреплённые за дисциплиной,
		сформированы на уровне – «хороший».
67-50/	«удовлетвори-тел	Выставляется обучающемуся, если он знает на базовом
D,E	ьно»/	уровне теоретический и практический материал,
	«зачтено	допускает отдельные ошибки при его изложении на
	(удовлетвори-тель	занятиях и в ходе промежуточной аттестации.
	но)»/	Обучающийся испытывает определённые затруднения
	«зачтено»	в применении теоретических положений при решении
		практических задач профессиональной направленности
		стандартного уровня сложности, владеет
		необходимыми для этого базовыми навыками и
		приёмами.
		Демонстрирует достаточный уровень знания учебной
		литературы по дисциплине.
		Оценка по дисциплине выставляются обучающемуся с
		учётом результатов текущей и промежуточной
		аттестации. Компетенции, закреплённые за дисциплиной,
		сформированы на уровне – «достаточный».
49-0/	«неудовлетворите	Выставляется обучающемуся, если он не знает на
F,FX	льно»/	базовом уровне теоретический и практический
1,17	не зачтено	материал, допускает грубые ошибки при его
	нс зачтено	изложении на занятиях и в ходе промежуточной
		аттестации.
		Обучающийся испытывает серьёзные затруднения в
		применении теоретических положений при решении
		практических задач профессиональной направленности
		стандартного уровня сложности, не владеет
		необходимыми для этого навыками и приёмами.
		Демонстрирует фрагментарные знания учебной
		литературы по дисциплине.
		Оценка по дисциплине выставляются обучающемуся с
		учётом результатов текущей и промежуточной
		аттестации.
		Компетенции на уровне «достаточный», закреплённые
		за дисциплиной, не сформированы.
	ı	shokumbaam.

- 5.3. Оценочные средства (материалы) для текущего контроля успеваемости, промежуточной аттестации обучающихся по дисциплине
- 5.3.1. Образцы заданий для самостоятельного выполнения

Контрольная работа 1

Вариант І

№1
$$((\neg p \supset \neg q) \supset ((q \supset p)) \equiv ((p \& q) \supset q)$$

Доказать в ИЭФ

№2
$$(p \supset ((p \supset q) \supset q)) \equiv 1$$

Доказать в ИЭФ

- **№3** (1) Привести к с.д.н.ф. и найти с.к.н.ф., используя множество векторов Ω_3 ((($p \& \neg (q \supset p)$) ∨ r) ∨ ($p \& (\neg q \supset (q \supset r)$)))
 - (2) Проверить результаты (1) по истинностной таблице.

№4 ((((
$$p \supset p$$
) \supset (($p \& r$) $\supset q$)) $\supset p$) & r) привести к с.к.н.ф. и проверить результаты по истинностной таблице.

№5* Выразить x + y через $x \downarrow y$, где $x \downarrow y = \neg(x \lor y), x + y - сложение Жегалкина (исключающее или).$

Вариант II

№1
$$((p \supset r) \supset ((q \supset r) \supset ((p \lor q)) \supset r))) \equiv (\neg q \supset (q \supset r))$$

Доказать в ИЭФ

№2
$$((p \supset q) \supset ((p \supset \neg q) \supset \neg p)) \equiv 1$$

Доказать в ИЭФ

- **№3** (1) Привести к с.д.н.ф. и найти с.к.н.ф., используя множество векторов Ω_3 ((($p \supset q$) \supset ($p \supset (p \lor r)$)) \supset ($p \lor r$))
 - (2) Проверить результаты (1) по истинностной таблице.

№4 ((((
$$p \supset (q \supset r)$$
) \supset (($p \& q$) $\supset r$)) $\supset p$) & q) привести к с.к.н.ф. и проверить результаты по истинностной таблице.

№5* Выразить x + y через $x \mid y$, где $x \mid y = \neg(x \& y)$, x + y - сложение Жегалкина (исключающее или).

Контрольная работа 2

Вариант І

№1. Построить сокращённую д.н.ф. F(x,y,z). Существуют ли фиктивные переменные у F(x,y,z)?

$$F(x,y,z) = <11110100>$$

Указание. Истинностная таблица начинается с <1,1,1>

№2. В булевой алгебре множеств (БАМ) доказать тождества

$$(1) (X \cap Y) - (X \cap Z) = (X \cap Y) - Z$$

$$(2) \quad X \cup Y = (X - Y) \cup (X \cap Y)$$

№3. В БАМ вывести из гипотез:

(1)
$$X \subseteq Y \vdash X \cup Z \subseteq Y \cup Z$$

(2)
$$(X \cap Y) \subseteq Z \vdash X \subseteq (-Y \cup Z)$$

№4. Будет ли линейной $F(x, y, z) = (xy \lor \neg x \neg y) + Z$?

№5. Выразить в алгебре Жегалкина $F(x,y,z)=(x \supset y)&(\neg x \lor z)$

№6. Будет ли функционально полной множество функций F={x+y, x V¬y,1}?

№7* Из функционально полных множеств выделить все возможные базисы

(1)
$$F_1 = \{x \supset y, 0, x+y, x \& y, 1\}$$

(2)
$$F_2 = \{x \lor y, x+y, 1, x&y\}$$

Вариант II

№1. Построить сокращённую д.н.ф. F(x,y,z). Существуют ли фиктивные переменные у F(x,y,z)?

$$F(x,y,z) = <0.01011111>$$

Указание. Истинностная таблица начинается с <1,1,1>

№2. В булевой алгебре множеств (БАМ) доказать тождества

(1)
$$(X \cup Y) - Z = (X - Z) \cup (Y - Z)$$

$$(2) \quad X - Y = X \dot{-} (X \cap Y)$$

№3. В БАМ вывести из гипотез:

(1)
$$(X-Y) \cup Y = X \vdash Y \subseteq X$$

(2)
$$X \subseteq (-Y \cup Z) \vdash X \cap Y \subseteq Z$$

№4. Будет ли самодвойственной $m(\neg x, y, \neg z)$?

№5. Выразить в алгебре Жегалкина $F(x,y,z)=(x \supset y)&(y \downarrow z)$

№6. Будут ли функционально полными множества

(1)
$$F_1 = \{m(x,y,z), x+y,1\}$$

(2)
$$F_2 = \{x \ \forall y, x \& y, x + y\}$$
?

№7*. Из функционально полных множеств выделить все возможные базисы

(1)
$$\{m(x,y,z), 0, x \supset y, x+y\}$$

(2)
$$\{x+y, x \lor \neg y, 1, x \equiv y, x&y\}$$

Контрольная работа 3

Вариант І

№1. Методом аналитических таблиц доказать $\forall x \forall y (P(x,y) \& Q(x,y)) \supset (\forall x \forall y P(x,y) \& \forall x \forall y Q(x,y))$

№2. Методом аналитических таблиц доказать $(\exists x P(x) \& \varphi) \supset \exists x (P(x) \& \varphi)$, где φ любая замкнутая формула.

№3. Методом аналитических таблиц доказать $\forall x (A(x) \equiv B(x)) + (\exists x A(x) \equiv \exists x B(x))$.

№4. Установить выполнимость в конечном универсуме U формулы $(\exists x P(x) \& \exists x Q(x)) \supset \forall x (P(x) \& Q(x)) \ . \ Найти U. \ Применить метод аналитических таблиц.$

№5. U={1,2,3}. R={<1,1>, <1,2>, <2,1>, <2,2>, <2,3>, <3,2>, <3,3>}, показать, что R рефлексивно и симметрично.

№6. Привести к предваренной нормальной форме $\exists x \forall y A(x,y) \lor \exists x \forall y B(x,y)$. Построить стандартную форму Скулема и найти H_0 и H_1 .

№7. Методом резолюций доказать невыполнимость $S = \{P \lor Q, R \lor Q, \neg R, \neg Q\}$. Построить дерево вывода.

№8*. Доказать методом аналитических таблиц $R \subseteq Q \supset R \square S \subseteq Q \square S$

Вариант II

№1. Методом аналитических таблиц доказать $\exists x \exists y (P(x,y) \lor Q(x,y)) \supset (\exists x \exists y P(x,y) \lor \exists x \exists y Q(x,y))$

№2. Методом аналитических таблиц доказать $(\phi \lor \forall x A(x)) \supset \forall x (\phi \lor A(x))$, где ϕ - любая замкнутая формула.

№3. $\forall x (A(x) \equiv B(x)) + (\forall x A(x) \equiv \forall x B(x))$. Вывести методом аналитических таблиц.

№4. $(\exists x P(x) \& \exists x Q(x)) \supset \exists x (P(x) \& Q(x))$. Методом аналитических таблиц установить выполнимость в конечном универсуме U. Найти U.

№5. U={1,2,3}. R={<1,1>, <1,2>, <2,1>, <2,2>, <2,3>, <3,2>, <3,3>}, найти
$$Q = R \square R$$
.

№6. Привести к предваренной нормальной форме $\forall x P(x) \supset \forall y (\forall z Q(y,z) \supset \forall u P(u)))$. Построить стандартную форму Скулема и найти H_0 и H_1 .

№7. Методом резолюций доказать невыполнимость $S = \{P \lor Q \lor \neg R, P \lor \neg Q, \neg P, R, T\}$. Построить дерево вывода.

№8*. Доказать методом аналитических таблиц $(P \circ Q)^{-1} \subseteq Q^{-1} \circ P^{-1}$

Контрольная работа 4

Вариант І

No1. (1)
$$W_1 = \{Q(a, x, f(x)), Q(a, y, y)\},$$

(2)
$$W_2 = \{Q(x,y,z), Q(u,h(v,v),u)\}.$$

Унифицируемое ли W_1 и W_2 , если да, то найти НОУ.

№2. Найти резольвенты (если они есть):

$$C_1 = P(x) \lor Q(x,b)$$

$$C_2=P(a) \vee Q(a,b)$$

- №3. (1) Каждый атлет силен
 - (2) Каждый, кто силен и умен, добьется успеха в своей карьере
 - (3) Петр атлет
 - (4) Петр умен
 - (5) Петр добьется успеха в своей карьере

$$A(x)$$
: $x - атлет, a - Петр$

S(x): x - cuлeн

Q(x): x - yмен

K(x): x - добьется успеха в карьере

Вывести следствие (5) из (1)-(4) методом резолюций. Построить дерево вывода.

№4. Из
$$\forall x \forall y \forall z (P(x,y) \supset (P(x,z) \lor (P(z,y)))$$

Методом резолюций вывести $\forall x \forall y \forall z ((P(x,y) \ | P(y,z)) \supseteq P(x,z))$

Построить дерево вывода.

№5. Методом резолюций из иррефлексивности и транзитивности отношения R вывести его асимметричность. Построить дерево вывода.

№6*. Методом резолюций из Р⊆О вывести Р∘R⊆О∘R

Вариант II

No1.
$$W_1 = \{P(a,x,h(g(z))), P(z,h(y),h(y))\},$$

$$W_2 = \{Q(f(w),a,z), Q(w,b,f(z))\}.$$

Унифицируемы ли W_1 и W_2 , если да, то найти НОУ.

№2.
$$C_1 = P(v,z,v) \vee P(w,z,w)$$
,

$$C_2=P(w,h(x,x),w)$$

Найти резольвенты, если они есть.

- №3. (1) Каждый студент честен
 - (2) Джон нечестен

Вывести следствие (3) из (1) и (2) методом резолюций. Построить дерево вывода.

№4. Из
$$\forall x \forall y \forall z ((P(x,y) R P(y,z)) \supset P(x,z))$$

Методом резолюций вывести $\forall x \forall y \forall z (P(x,y) ⊃ (P(x,z) \lor P(z,y)))$

Построить дерево вывода.

⁽³⁾ Джон – не студент

N25. (1)
$$\forall$$
 x \exists y(L(x, y) ⊃ L(x, F))

(2)
$$\forall \mathbf{x} \, \exists y \, L(\mathbf{x}, \mathbf{y})$$

(3) $\forall x L(x, \mathcal{F})$

Методом резолюций из (1) и (2) вывести (3) (задача о Св. Франциске). Построить дерево вывода.

№6*. Методом резолюций из $P \subseteq Q$ вывести $R \circ P \subseteq R \circ Q$

Контрольные вопросы к экзамену

Вопросы 1-го семестра:

- 1. Теорема 1 о функции оценки $v[\phi]$
- 2. Исчисление эквивалентных формул (ИЭФ). Теорема 2 о корректности.
- 3. Приведение к с.д.н.ф. в ИЭФ. Теорема 3 о представлении булевской функции посредством с.д.н.ф.
- 4. Приведение к с.к.н.ф. в ИЭФ. Теорема 4 о представлении булевской функции посредством с.к.н.ф.
- 5. ИЭФ. Теорема 5 о полноте ИЭФ.
- 6. Класс T_0 : замкнутость и предполнота
- 7. Класс T_1 : замкнутость и предполнота
- 8. Числа элементов $T_0^{(n)}$, $T_1^{(n)}$ и $S^{(n)}$, $L^{(n)}$
- 9. Булева алгебра множеств. Теорема о дополнении. Число элементов $P_2^{(n)}$.
- 10. Принцип двойственности в булевой алгебре высказываний
- 11. Класс S самодвойственных функций. Замкнутость S. Число элементов $S^{(n)}$.
- 12. Класс монотонных булевых функций M. Замкнутость M.
- 13. Лемма 1 о $F \notin S$. Предполнота S.
- 14. Лемма 2 о *F*∉*M*. Предполнота М.
- 15. Алгебра И.И. Жегалкина. Класс линейных булевских функций. Замкнутость L. Число элементов $L^{(n)}$.
- 16. Лемма 3 о $F \notin L$. Предполнота L.
- 17. Алгебра И.И. Жегалкина. Её функциональная эквивалентность булевой алгебре высказываний.
- 18. Булева алгебра высказываний (исчисление эквивалентных формул). Доказуемость формул и выводимость из гипотез. Теорема об отрицании.

- 19. Булева алгебра множеств. Булеан 2^U . Число элементов 2^U . Теорема о дополнении.
- 20. Теорема 6 о функциональной полноте (необходимость). Следствие 1.
- 21. Теорема о функциональной полноте (достаточность).
- 22. Следствие 2 Теоремы о функциональной полноте (число предполных классов есть в точности 5). Определение базиса множества булевских функций. Как найти базис множества булевских функций (следствие Теоремы 6 о функциональной полноте)?

Вопросы 2-го семестра:

- 1. Множества Хинтикки и лемма Хинтикки для логики высказываний.
- 2. Теорема о корректности для метода аналитических таблиц для логики высказываний.
- 3. Теорема о полноте для логики высказываний.
- 4. Приведение к д.н.ф. методом аналитических таблиц.
- 5. Приведение к к.н.ф. методом аналитических таблиц.
- 6. Нахождение контроценок методом аналитических таблиц.
- 7. Лемма Кёнига.
- 8. Устранение кванторов для конечного универсума. Вывод формулы для композиции бинарных отношений.
- 9. Приведение к стандартной форме Скулема. Эрбранов универсум.
- 10. Н-интерпретация, Н-интерпретация I^* , соответствующая интерпретации I. Теорема 2 о невыполнимости множества дизъюнктов S.
- 11. Семантические деревья. Теорема Эрбрана (версия I).
- 12. Семантические деревья. Теорема Эрбрана (версия II) (без доказательства).
- 13. Метод резолюций для логики высказываний. Теорема 5 о резольвенте.
- 14. Подстановка, композиция подстановок, унификация. Алгоритм унификации. Леммы 1-3.
- 15. Теорема 6 об унификации.
- 16. Метод резолюций для логики предикатов. Определение резольвенты. Резолютивный вывод. Лемма подъема.
- 17. Теорема 8 о полноте метода резолюций для логики предикатов.
- 18. Теорема корректности для логики предикатов (метод аналитических таблиц).
- 19. Множества Хинтикки и Лемма Хинтикки для логики предикатов.
- 20. Теорема о полноте для логики предикатов (метод аналитических таблиц).

6. Учебно-методическое и информационное обеспечение дисциплины

6.1. Список источников и литературы

а) Основная литература

- 1. *Певзнер М.С., Финн В.К.* Логические средства информационных систем: алгебра и логика высказываний, алгебра множеств (учебное пособие). М.: МГИАИ, 1989.
- 2. *Чень Ч., Ли Р.* Математическая логика и автоматическое доказательство теорем. М.: Наука, 1983.
- 3. *Новиков Ф.А.* Дискретная математика: Учебник для вузов. 3-е изд. Стандарт третьего поколения. СПб.: Питер, 2017 (с. 198–224).
- 4. *Лавров И.А., Максимова Л.Л.* Задачи по теории множеств, математической логике и теории алгоритмов. М.: Наука, 1975.
- 5. Гладкий А.В. Математическая логика. М.: РГГУ, 1998.
- 6. *Вагин В.Н., Головина Е.Ю., Загорянская А.А., Фомина М.В.* Достоверный и правдоподобный вывод в интеллектуальных системах М.: Физматлит., 2004

б) Дополнительная литература

- 1. Многозначные логики и их применения. Том 1. Логические исчисления, алгебры и функциональные свойства // *Ред. В.К.Финн* М.: ЛКИ., 2008
- 2. Многозначные логики и их применения. Том 2. Логики в системах искусственного интеллекта // *Ред. В.К.Финн* М.: ЛКИ., 2008

6.2 Перечень ресурсов информационно-телекоммуникационной сети «Интернет»

- 1. http://isdwiki.rsuh.ru/moodle/course/view.php?id=11
- 2. http://www.wolframalpha.com/

Перечень БД и ИСС

№п	Наименование						
/π							
1	Международные реферативные наукометрические БД, доступные в рамках						
	национальной подписки в 2019 г.						
	Web of Science						
	Scopus						
2	Профессиональные полнотекстовые БД, доступные в рамках национальной						
	подписки в 2019 г.						
	Журналы Cambridge University Press						
	ProQuest Dissertation & Theses Global						
	SAGE Journals						
	Журналы Taylor and Francis						
3	Профессиональные полнотекстовые БД						
	JSTOR						
	Издания по общественным и гуманитарным наукам						
	, , , , , , , , , , , , , , , , , , , ,						
	Электронная библиотека Grebennikon.ru						

4	Компьютерные справочные правовые системы
	Консультант Плюс, Гарант

7. Материально-техническое обеспечение дисциплины

Учебный класс с хорошей доской, компьютером и видеопроектором.

1. Перечень ПО

№п	Наименование ПО	Производитель	Способ
/π			распространения
			(лицензионное или
			свободно
			распространяемое)
1	Adobe Master Collection CS4	Adobe	лицензионное
2	ОС «Альт Образование» 8	ООО «Базальт СПО	лицензионное
3	Windows 10 Pro	Microsoft	лицензионное
4	Kaspersky Endpoint Security	Kaspersky	лицензионное
5	Microsoft Office 2016	Microsoft	лицензионное

8. Обеспечение образовательного процесса для лиц с ограниченными возможностями здоровья и инвалидов

В ходе реализации дисциплины используются следующие дополнительные методы обучения, текущего контроля успеваемости и промежуточной аттестации обучающихся в зависимости от их индивидуальных особенностей:

- для слепых и слабовидящих:
 - лекции оформляются в виде электронного документа, доступного с помощью компьютера со специализированным программным обеспечением;
 - письменные задания выполняются на компьютере со специализированным программным обеспечением, или могут быть заменены устным ответом;
 - обеспечивается индивидуальное равномерное освещение не менее 300 люкс;
 - для выполнения задания при необходимости предоставляется увеличивающее устройство; возможно также использование собственных увеличивающих устройств;
 - письменные задания оформляются увеличенным шрифтом;
 - экзамен и зачёт проводятся в устной форме или выполняются в письменной форме на компьютере.
- для глухих и слабослышащих:
 - лекции оформляются в виде электронного документа, либо предоставляется звукоусиливающая аппаратура индивидуального пользования;
 - письменные задания выполняются на компьютере в письменной форме;
 - экзамен и зачёт проводятся в письменной форме на компьютере; возможно проведение в форме тестирования.
- для лиц с нарушениями опорно-двигательного аппарата:

- лекции оформляются в виде электронного документа, доступного с помощью компьютера со специализированным программным обеспечением;
- письменные задания выполняются на компьютере со специализированным программным обеспечением;
- экзамен и зачёт проводятся в устной форме или выполняются в письменной форме на компьютере.

При необходимости предусматривается увеличение времени для подготовки ответа.

Процедура проведения промежуточной аттестации для обучающихся устанавливается с учётом их индивидуальных психофизических особенностей. Промежуточная аттестация может проводиться в несколько этапов.

При проведении процедуры оценивания результатов обучения предусматривается использование технических средств, необходимых в связи с индивидуальными особенностями обучающихся. Эти средства могут быть предоставлены университетом, или могут использоваться собственные технические средства.

Проведение процедуры оценивания результатов обучения допускается с использованием дистанционных образовательных технологий.

Обеспечивается доступ к информационным и библиографическим ресурсам в сети Интернет для каждого обучающегося в формах, адаптированных к ограничениям их здоровья и восприятия информации:

- для слепых и слабовидящих:
 - в печатной форме увеличенным шрифтом;
 - в форме электронного документа;
 - в форме аудиофайла.
- для глухих и слабослышащих:
 - в печатной форме;
 - в форме электронного документа.
- для обучающихся с нарушениями опорно-двигательного аппарата:
 - в печатной форме;
 - в форме электронного документа;
 - в форме аудиофайла.

Учебные аудитории для всех видов контактной и самостоятельной работы, научная библиотека и иные помещения для обучения оснащены специальным оборудованием и учебными местами с техническими средствами обучения:

- для слепых и слабовидящих:
 - устройством для сканирования и чтения с камерой SARA CE;
 - дисплеем Брайля PAC Mate 20:
 - принтером Брайля EmBraille ViewPlus;
- для глухих и слабослышащих:
 - автоматизированным рабочим местом для людей с нарушением слуха и слабослышащих;
 - акустический усилитель и колонки;
- для обучающихся с нарушениями опорно-двигательного аппарата:
 - передвижными, регулируемыми эргономическими партами СИ-1;
 - компьютерной техникой со специальным программным обеспечением.

9. Методические материалы

9.1. Планы семинарских занятий

Цель занятий: усвоить основные понятия алгебры логики, научиться строить истинностные таблицы, осуществлять вывод в исчислении эквивалентных формул, находить СДНФ и СКНФ, определять принадлежность функций алгебры логики к предполным классам, отвечать на вопрос о функциональной полноте конечных множеств функций, находить базисы систем функций.

Форма проведения – обсуждение, решение задач, опрос.

Вопросы для обсуждения:

Что такое формула логики высказываний? Что такое СДНФ и СКНФ? Какими способами можно найти СДНФ и СКНФ формулы логики высказываний? Что такое функция алгебры логики? Что такое суперпозиция функций алгебры логики? Какие классы функций называются замкнутыми, полными и предполными? Как можно использовать теорему о функциональной полноте для доказательства функциональной полноты системы функций и определения базисов систем функций?

Контрольные вопросы:

- 1. Логические связки, формулы логики высказываний. Истинностные таблицы логических операций.
- 2. Аксиомы и правила вывода ИЭФ. Теоремы о корректности и полноте ИЭФ.
- 3. СДНФ, СКНФ и способы приведения формул логики высказываний к СДНФ и СКРФ.
- 4. Булевские функции и их суперпозиция. Замкнутые классы булевских функций. Предполные классы. Теорема о функциональной полноте систем булевских функций.

Список источников и литературы:

- 1. Певзнер М.С., Финн В.К. Логические средства информационных систем: алгебра и логика высказываний, алгебра множеств (учебное пособие). М.: МГИАИ, 1989 (с. 8–37)
- 2. Новиков Ф.А. Дискретная математика: Учебник для вузов. 3-е изд. Стандарт третьего поколения. СПб.: Питер, 2017 (с. 155–197).

Материально-техническое обеспечение занятия: академическая аудитория с хорошей доской.

Тема 2. (14 ч.) Логика высказываний

Цель занятий: освоить метод аналитических таблиц, научиться использовать аналитические таблицы для решения различных задач.

Форма проведения – обсуждение, решение задач, опрос.

Вопросы для обсуждения:

Что такое альфа- и бета-правила? Какие формулы являются доказуемыми? В каком случае мы говорим, что формула выводима из совокупности гипотез? Что такое множество Хинтикки? Как использовать аналитические таблицы для приведения к ДНФ и КНФ? Как использовать аналитические таблицы для решения текстовых логических залач?

Контрольные вопросы:

- 1. Альфа- и бета-правила. Аналитические таблицы.
- 2. Доказуемость формул и выводимость из совокупности гипотез.

- 3. Деревья. Лемма Кёнига. Теорема Компактности.
- 4. Множества Хинтикки. Лемма Хинтикки. Теоремы о корректности и о полноте.

Список источников и литературы:

1. Певзнер М.С., Финн В.К. Логические средства информационных систем: алгебра и логика высказываний, алгебра множеств (учебное пособие). – М.: МГИАИ, 1989 (с. 73–108).

Материально-техническое обеспечение занятия: академическая аудитория с хорошей доской.

Тема 3. (12 ч.) Множества и отношения

Цель занятий: познакомиться с булевой алгеброй множеств, познакомиться со свойствами бинарных отношений и способами определения отношений, рассмотреть важные классы бинарных отношений (отношения эквивалентности и частичного порядка), научиться решать задачи с использованием аксиом булевой алгебры и свойств бинарных отношений.

Форма проведения – обсуждение, решение задач, опрос.

Вопросы для обсуждения:

Похожи ли аксиомы булевой алгебры множеств на аксиомы ИЭФ? Как определяется симметрическая разность множеств и какой операции алгебры логики она соответствует? Какое отношение называется отношением эквивалентности? Каков интуитивный смысл отношений эквивалентности? Как связаны между собой отношения эквивалентности и разбиения? Что такое диаграмма Хассе? Как используется диаграмма Хассе для представления отношения частичного порядка? Что такое полурешетка, квазирешетка и решетка?

Контрольные вопросы:

- 1. Булева алгебра множеств и ее сходство с булевой алгеброй классической логики.
- 2. Бинарные отношения и их свойства.
- 3. Отношения эквивалентности. Разбиения.
- 4. Отношения порядка. Диаграммы Хассе. Полурешетки, квазирешетки, решетки.

Список источников и литературы:

- 1. Певзнер М.С., Финн В.К. Логические средства информационных систем: алгебра и логика высказываний, алгебра множеств (учебное пособие). М.: МГИАИ, 1989 (с. 50–72).
- 2. Новиков Ф.А. Дискретная математика: Учебник для вузов. 3-е изд. Стандарт третьего поколения. СПб.: Питер, 2017 (с. 21–103).

Материально-техническое обеспечение занятия: академическая аудитория с хорошей доской.

Тема 4. (12 ч.) Логика предикатов

Цель занятий: ознакомить студентов с основными понятиями и результатами логики предикатов, научить применять исчисление предикатов для решения практических задач.

Форма проведения – обсуждение, решение задач, опрос.

Вопросы для обсуждения:

Каков интуитивный смысл кванторов? Каким образом можно перевести на язык логики предикатов математические утверждения? Как можно формально определить семантику логики предикатов? Каковы правила аналитических таблиц для логики предикатов и каков предпочтительный порядок их использования? Как можно применять аналитические таблицы для логики предикатов при решении практических задач?

Контрольные вопросы:

- 1. Язык логики предикатов. Кванторы.
- 2. Семантика логики предикатов. Реляционные системы. Модели. Общезначимость.
- 3. Предикаты на конечных универсумах.
- 4. Аналитические таблицы для логики предикатов.
- 5. Лемма Хинтикки. Теоремы о корректности и о полноте системы аналитических таблиц для логики предикатов. Теорема компактности.

Список источников и литературы:

- 1. Певзнер М.С., Финн В.К. Логические средства информационных систем: алгебра и логика высказываний, алгебра множеств (учебное пособие). М.: МГИАИ, 1989 (с. 38–49).
- 2. Новиков Ф.А. Дискретная математика: Учебник для вузов. 3-е изд. Стандарт третьего поколения. СПб.: Питер, 2017 (с. 198–224).

Материально-техническое обеспечение занятия: академическая аудитория с хорошей доской.

Тема 5. (20 ч.) Теорема Эрбрана и методы автоматического доказательства теорем

Цель занятий: усвоить основные методы решения линейных уравнений.

Форма проведения – обсуждение, решение задач, опрос.

Вопросы для обсуждения:

Каков алгоритм приведения формулы к предваренной нормальным форме? Как порождается нормальная форма Скулема? Как связны между собой исходная формула и ее нормальная форма Скулема? Будет ли нормальная форма Скулема эквивалентна исходной формуле? Как можно построить эрбрановский универсум для множества дизъюнктов? Как определить Н-интерпретацию? Как применять алгоритм унификации? Как использовать метод резолюций для решения практических задач?

Контрольные вопросы:

- 1. Предваренные нормальные формы. Нормальные формы Скулема.
- 2. Теорема о противоречивости формулы, представленной в нормальной форме Скулема.
- 3. Эрбрановский универсум. Н-интерпретации множества дизьюнктов.
- 4. Семантические деревья. Опровергающие вершины.
- 5. Теорема Эрбрана (вариант I и вариант II).
- 6. Метод резолюций для логики высказываний. Теорема о резольвенте.
- 7. Подстановка и унификация, наиболее общий унификатор. Алгоритм унификации.

8. Метод резолюция для логики предикатов. Лемма подъема. Теорема о полноте метода резолюций.

Список источников и литературы:

1. Чень Ч., Ли Р. Математическая логика и автоматическое доказательство теорем. – М.: Наука, 1983 (с. 43–101).

Материально-техническое обеспечение занятия: академическая аудитория с хорошей доской.

9.2. Методические указания для обучающихся по освоению дисциплины

Наименование раздела	Кол- во	Вопросы для изучения	Литература
дисциплины	часов		
Математическая			
логика. Часть 1			
логика. Часть 1 Алгебра логики	14	Язык логики высказываний. Логические связки. Формулы. Булевские оценки. Тавтологии. Эквивалентные формулы. Исчисление эквивалентных формул (ИЭФ). Доказуемые формулы и формулы, выводимые из гипотез. Теорема о непротиворечивости для ИЭФ. Нормальные формы в ИЭФ. СДНФ, СКНФ. Приведение к ДНФ (СДНФ) и КНФ (СКНФ). Теорема о полноте для ИЭФ. Булевские функции. Суперпозиции булевских функций. Замкнутые классы. Предполные классы. Теоремы о представлении булевских функций посредством СДНФ и СКНФ. Функциональная полнота систем булевских функций. Число булевских функций. Число булевских функций. Число булевских функций. Классы Т0 и Т1. Замкнутость Т0 и Т1. Предполнота Т0 и Т1. Класс линейных функций L. Замкнутость L. Предполнота L. Лемма о нелинейной функции. Класс монотонных функций М. Замкнутость М. Предполнота М. Лемма о немонотонной функции. Класс самодвойственных	Певзнер М.С., Финн В.К. Логические средства информационных систем: алгебра и логика высказываний, алгебра множеств (учебное пособие). – М.: МГИАИ, 1989 (с. 8–37) Новиков Ф.А. Дискретная математика: Учебник для вузов. 3-е изд. Стандарт третьего поколения. — СПб.: Питер, 2017 (с. 155–197).
		1 5	

		T	Ţ
		несамодвойственной функции.	
		Теорема о функциональной	
		полноте систем булевских	
		функций.	
Логика	14	Логика высказываний. Метод	Певзнер М.С., Финн В.К.
высказываний		аналитических таблиц (а.т.).	Логические средства
		Классификация формул.	информационных систем:
		Доказуемые формулы. Альфа-,	алгебра и логика
		бета-правила. Примеры	высказываний, алгебра
		расширения метода а.т. для	множеств (учебное
		трехзначных логик. Определения	пособие). – М.: МГИАИ,
		противоречий в логике	1989 (c. 73–108).
		высказываний. Теорема о	
		непротиворечивости метода а.т.	
		Лемма Хинтикки (для логики	
		высказываний). Теорема о	
		полноте метода а.т. (для логики	
		высказываний). Теорема	
		компактности (для логики	
		высказываний). Приведение к	
		ДНФ. и КНФ. методом а.т.	
Множества и	12	Булева алгебра множеств.	Певзнер М.С., Финн В.К.
отношения		Кортежи. Декартово	Логические средства
		произведение. Предикаты и	информационных систем:
		отношения. Булева алгебра	алгебра и логика
		отношений. Бинарные	высказываний, алгебра
		отношения. Операции обращения	множеств (учебное
		и композиции. Бинарные	пособие). – М.: МГИАИ,
		отношения: матричное задание	1989 (c. 50–72).
		булевских операций над	
		бинарными отношениями.	Новиков Ф.А. Дискретная
		Свойства и типы бинарных	математика: Учебник для
		отношений. Графы. Простые	вузов. 3-е изд. Стандарт
		графы и бинарные отношения.	третьего поколения. —
		Отношения типа	СПб.: Питер, 2017 (с.
		эквивалентности. Разбиения.	21–103).
		Теорема о разбиении. Частично	
		упорядоченные множества.	
		Диаграммы. Полурешетки.	
		Квазирешетки. Дистрибутивные	
		решетки. Дистрибутивные	
		решетки с дополнениями (булевы	
		алгебры). Примеры	
		дистрибутивных квазирешеток и	
		решеток: некоторые трехзначные	
		логики.	
Математическая			
логика. Часть 2			
Логика предикатов	12	Язык логики предикатов первого	Певзнер М.С., Финн В.К.
		порядка. Кванторы. Формулы.	Логические средства
		Оценки формул логики	информационных систем:
		предикатов первого порядка.	алгебра и логика
		1 1 1	<u>.</u>

		Γ_	
		Реляционные системы, модели. Общезначимые формулы. Предикаты на конечных	высказываний, алгебра множеств (учебное пособие). – М.: МГИАИ,
		универсумах: устранение	1989 (c. 38–49).
		кванторов. Метод а.т. для логики	1707 (C. 30 -4 9).
		предикатов первого порядка.	Новиков Ф.А. Дискретная
		Классификация формул. Правила	математика: Учебник для
		вывода. Доказуемые формулы.	вузов. 3-е изд. Стандарт
		Теорема о непротиворечивости	третьего поколения. —
		метода а.т. (для логики	СПб.: Питер, 2017 (с.
		предикатов). Лемма Хинтикки	198–224).
		(для логики предикатов). Теорема	ĺ
		о полноте метода а.т. (для логики	
		предикатов)	
Теорема Эрбрана и	20	Предваренные нормальные	Чень Ч., Ли Р.
методы		формы в логике предикатов.	Математическая логика и
автоматического		Предваренные нормальные	автоматическое
доказательства		формы Скулема. Теорема о	доказательство теорем
теорем		противоречивости формулы,	М.: Наука, 1983 (с.
		представленной в предваренной	43–101).
		нормальной форме Скулема.	
		Эрбрановский универсум	
		множества дизъюнктов.	
		Н-интерпретации множества	
		дизъюнктов S. Необходимое и	
		достаточное условие невыполнимости S.	
		Семантические деревья.	
		Опровергающие вершины.	
		Теорема Эрбрана (вариант I).	
		Теорема Эрбрана (вариант I).	
		Применение теоремы Эрбрана:	
		метод Девиса-Патнема. Метод	
		резолюций для для логики	
		высказываний. Теорема о	
		резольвенте как следствии	
		дизъюнктов С1 и С2.	
		Подстановка и унификация,	
		наиболее общий унификатор.	
		Алгоритм унификации. Теорема	
		унификации. Метод резолюций	
		для логики предикатов 1-го	
		порядка. Лемма подъема.	
		Теорема о полноте метода	
		резолюций. Стратегия	
		вычеркивания. Алгоритм	
		поглощения. Теорема о	
		корректности алгоритма	
		поглощения.	

Освоение дисциплины «Математическая логика» предполагает активную самостоятельную работу студента. Самостоятельная работа студента состоит из:

- подготовки к лекциям и семинарам (чтению и усвоению соответствующей литературы, указанной в таблице «Планы семинарских занятий», а также конспектов предыдущих лекций и дополнительной литературы);
- выполнения домашних заданий;
- выполнения домашних индивидуальных контрольных работ;
- подготовки к контрольным работам, зачету и экзамену.

Самостоятельная работа студента является важным компонентом обучения. Студент обязан приходить на лекции и семинары предварительно подготовившись по пройденным темам, которые используются в текущих лекциях и семинарах.

АННОТАЦИЯ ДИСЦИПЛИНЫ

Дисциплина «Математическая логика» является частью математического и общенаучного цикла дисциплин (Б2) подготовки студентов по направлению подготовки 036000 «Интеллектуальные системы в гуманитарной сфере». Дисциплина реализуется на отделении интеллектуальных систем в гуманитарной сфере кафедрой математики, логики и интеллектуальных систем в гуманитарной сфере.

Цель дисциплины: развитие навыков точного рассуждения, включающего методы доказательства в исчислениях как заданных аксиоматически, так и в виде систем правил (натуральные исчисления).

Задачи дисциплины:

- изложение начальных сведений, необходимых как для дальнейшего изучения математической логики, так и для успешного освоения курсов программирования и информационных систем;
- введение в теорию бинарных отношений, которая необходима для изучения теории баз данных;
- изложение основ автоматического доказательства теорем (этот раздел логики имеет большое значение для систем искусственного интеллекта).

Дисциплина направлена на формирование следующих компетенций:

- ОПК-1.1 Способен использовать основы математического анализа, логики и математического моделирования.
- ОПК-1.2 Способен использовать математические методы для построения моделей в информатике, лингвистике и некоторых гуманитарных дисциплинах.
- ОПК-2.2 Пользуется современными справочными и библиотечными системами и системами дистанционного образования.

В результате освоения дисциплины *(модуля)* обучающийся должен: *Знать*:

- характеристики аксиоматического метода (ОПК-1.1, ОПК-1.2);
- определения фундаментальных понятий математической логики (логическая связка, формула, булевская оценка, тавтология, эквивалентность формул, совершенная дизьюнктивная нормальная форма (СДНФ) и совершенная конъюнктивная нормальная форма (СКНФ),булевская функция, замкнутый класс булевских функций, полнота и предполнота класса булевских функций; бинарное отношение, отношение эквивалентности и порядка, решетка, булева алгебра; логический вывод и доказательство, натуральный вывод, исчисление гильбертовского типа, аналитические таблицы, предикат, квантор, реляционнонная система, модел, общезначимость, полнота и непротиворечивость формальных теорий, предваренная нормальная форма, предваренная нормальная форма Скулема, Эрбрановский универсум, резолюция, подстановка и унификация) (ОПК-1.1, ОПК-1.2);
- теорему о функциональной полноте системы булевских функций (ОПК-1.1, ОПК-1.2);
- леммы Хинтикки и теоремы о полноте метода аналитических таблиц для логики высказываний и логики предикатов (ОПК-1.1, ОПК-1.2);
- теорему о противоречивости формулы, представленной в предваренной нормальной форме Скулема, теорему Эрбрана (ОПК-1.1, ОПК-1.2);
- примеры применения теоремы Эрбрана для атоматического доказательства теорем (метод Девиса-Патнема, метод резолюций) (ОПК-1.1, ОПК-1.2);
- способы доступа к информационным ресурсам по математической логике (ОПК-2.2).

Уметь:

- формулировать на языках логики высказываний и логики предикатов утверждения (прежде всего математические), записанные неформально (ОПК-1.1, ОПК-1.2);
- использовать технику алгебры логики для приведения формул логики высказываний к СДНФ и СКНФ (ОПК-1.1, ОПК-1.2);
- использовать технику натурального вывода для построения доказательств методом аналитических таблиц (ОПК-1.1, ОПК-1.2);
- использовать алгебру бинарных отношений (ОПК-1.1, ОПК-1.2);
- использовать поисковые машины для обнаружения нужной информации по математической логике (ОПК-2.2).

Владеть:

- навыками построения истинностных таблиц (ОПК-1.1, ОПК-1.2);
- навыками тождественных преобразований в алгебре логики (ОПК-1.1, ОПК-1.2);
- навыками построения аналитических таблиц (ОПК-1.1, ОПК-1.2).

По дисциплине предусмотрены следующие виды контроля: текущий контроль успеваемости в форме устных ответов у доски, выполнения письменных домашних заданий и написания контрольных работ, промежуточная аттестация в форме экзамена.

Общая трудоемкость освоения дисциплины составляет 7 зачетных единиц.

ЛИСТ ИЗМЕНЕНИЙ

No	Текст актуализации или прилагаемый к РПД документ,	Дата	№
	содержащий изменения		протокола
1	Приложение №1	08.06.2020г	6

1. Структура дисциплины (к п. 2 РПД на 2020)

Структура дисциплины (модуля) для очной формы обучения

Общая трудоёмкость дисциплины составляет 8 з.е., 304 ч., в том числе контактная работа обучающихся с преподавателем 112 ч., промежуточная аттестация 36 ч., самостоятельная работа обучающихся 156 ч.

		Ce		В	-	ебной рас часах)	боты		
		ме ст		Kor	<u>(в</u> ітактная		Пр	С	-
		p	Лек	Ce	пактная		оме	a	
		Р	ции	ми			жу	M M	
			ции	нар			точ	oc	Формы
				пар			ная	то	текущего
1,0	Th.				_	_ ~	атт	ЯТ	контроля
№	Раздел				Прак	Лабо	ест	ел	успеваемости,
п/п	дисциплины/темы				тичес	ратор	аци	Ь-	форма
					кие	ные	Я	на	промежуточной
					занят	занят		Я	аттестации (по семестрам)
					ИЯ	ИЯ		pa	семестрам)
								б	
								ОТ	
								a	
1	Алгебра логики	1	8	12				26	Оценка
									выполнения
									практических
									заданий
2	Логика	1	8	12				26	Оценка
	высказываний								выполнения
									практических
								2.5	заданий
3	Множества и	1	8	8				26	Оценка
	отношения								выполнения
									практических
									заданий,
									контрольная работа
		1				 	18		экзамен по
	экзамен	1					10		билетам
	итого:		24	32		 	18	78	01131014111
4	Логика	2	12	12		 	10	38	Оценка
	предикатов		• •						выполнения
	продпилов								практических
									заданий
5	Теорема Эрбрана	2	12	20				40	Оценка
	и методы								выполнения
	автоматического								практических

доказательства							заданий,
теорем							контрольная
							работа
DESONOT	2				18		экзамен по
экзамен					10		билетам
итого:		24	32		18	78	

2. Образовательные технологии (к п.4 на 2020 г.)

В период временного приостановления посещения обучающимися помещений и территории РГГУ. для организации учебного процесса с применением электронного обучения и дистанционных образовательных технологий могут быть использованы следующие образовательные технологии:

- видео-лекции;
- онлайн-лекции в режиме реального времени;
- электронные учебные пособия, научные издания в электронном виде и доступ к иным электронным образовательным ресурсам;
 - системы для электронного тестирования;
 - консультации с использованием телекоммуникационных средств.

3. Перечень БД и ИСС (к п. 6.2 на 2020 г.)

№п/	Наименование							
П								
1	Международные реферативные наукометрические БД, доступные в рамках							
	национальной подписки в 2020 г.							
	Web of Science							
	Scopus							
2	Профессиональные полнотекстовые БД, доступные в рамках национальной							
	подписки в 2020 г.							
	Журналы Cambridge University Press							
	ProQuest Dissertation & Theses Global							
	SAGE Journals							
	Журналы Taylor and Francis							
3	Профессиональные полнотекстовые БД							
	JSTOR							
	Издания по общественным и гуманитарным наукам							
	Электронная библиотека Grebennikon.ru							
4	Компьютерные справочные правовые системы							
	Консультант Плюс,							
	Гарант							

4. Состав программного обеспечения (ПО) (к п. 7 на 2020 г.)

№п/п	Наименование ПО	Производитель	Способ распространения
			(лицензионное или свободно
			распространяемое)
1	Adobe Master Collection CS4	Adobe	лицензионное
2	Microsoft Office 2010	Microsoft	лицензионное
3	Windows 7 Pro	Microsoft	лицензионное
4	AutoCAD 2010 Student	Autodesk	свободно распространяемое
5	Archicad 21 Rus Student	Graphisoft	свободно распространяемое

6	SPSS Statisctics 22	IBM	лицензионное
7	Microsoft Share Point 2010	Microsoft	лицензионное
8	SPSS Statisctics 25	IBM	лицензионное
9	Microsoft Office 2013	Microsoft	лицензионное
10	ОС «Альт Образование» 8	ООО «Базальт СПО	лицензионное
11	Microsoft Office 2013	Microsoft	лицензионное
12	Windows 10 Pro	Microsoft	лицензионное
13	Kaspersky Endpoint Security	Kaspersky	лицензионное
14	Microsoft Office 2016	Microsoft	лицензионное
15	Visual Studio 2019	Microsoft	лицензионное
16	Adobe Creative Cloud	Adobe	лицензионное
17	Zoom	Zoom	лицензионное